Superoxide scavenging attenuates renal responses to ANG II during nitric oxide synthase inhibition in anesthetized dogs.
نویسندگان
چکیده
To assess the role of superoxide (O2-) and nitric oxide (NO) interaction in mediating the renal actions of ANG II, we examined the renal responses to intra-arterial infusion of ANG II (0.5 ng x kg(-1) x min(-1)) before and during administration of a superoxide dismutase mimetic, tempol (0.5 mg x kg(-1) x min(-1)), in the presence or absence of NO synthase inhibitor, nitro-L-arginine (NLA; 50 microg x kg(-1) x min(-1)), in anesthetized dogs pretreated with enalaprilat (33 microg x kg(-1) x min(-1)). In one group of dogs (n = 7), ANG II infusion before tempol infusion caused decreases of 24 +/- 4% in renal blood flow (RBF), 55 +/- 7% in urine flow (V), and 53 +/- 8% in urinary sodium excretion (U(Na)V) with a slight decrease in glomerular filtration rate (GFR; -7.8 +/- 3.4%). Tempol infusion alone did not cause significant alterations in RBF, GFR, V, or U(Na)V; however, ANG II in the presence of tempol caused a smaller degree of decreases in RBF (-12 +/- 2%), in V (-16 +/- 5%), and in U(Na)V (-27 +/- 10%) with a slight increase in GFR (6.6 +/- 2.8%) than the responses observed before tempol. In another group of NLA-treated dogs (n = 6), tempol infusion also caused significant attenuation in the ANG II-induced responses on RBF (-13 +/- 3% vs. -22 +/- 7%), GFR (-19 +/- 5% vs. -33 +/- 3), V (-15 +/- 12% vs. -28 +/- 4%), and U(Na)V (-11 +/- 14% vs. -32 +/- 7%). These data demonstrate that renal responses to ANG II are partly mediated by O2- generation and its interaction with NO. The sodium-retaining effect of ANG II is greatly influenced by O2- generation, particularly in the condition of NO deficiency.
منابع مشابه
CALL FOR PAPERS Cardiovascular-Renal Mechanisms in Health and Disease Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide
Just A, Olson AJ, Whitten CL, Arendshorst WJ. Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide. Am J Physiol Heart Circ Physiol 292: H83–H92, 2007. First published September 1, 2006; doi:10.1152/ajpheart.00715.2006.—NAD(P)H oxidases (NOX) and reactive oxygen species (ROS) are involved in vasoconstriction an...
متن کاملSuperoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
Experiments were performed to test the hypothesis that the impact of endogenous nitric oxide (NO) on ANG II-induced renal arteriolar constriction is reduced in rats with insulin-dependent diabetes mellitus (65 mg/kg streptozotocin; STZ). Arteriolar diameter responses to exogenous ANG II were quantified before and during NO synthase inhibition (100 microM N(omega)-nitro-L-arginine; L-NNA) by usi...
متن کاملCALL FOR PAPERS Oxidative Stress Inhibition of nitric oxide synthase enhances superoxide activity in canine kidney
Majid, Dewan S. A., Akira Nishiyama, Keith E. Jackson, and Alexander Castillo. Inhibition of nitric oxide synthase enhances superoxide activity in canine kidney. Am J Physiol Regul Integr Comp Physiol 287: R27–R32, 2004. First published March 25, 2004; 10.1152/ajpregu.00073.2004.—To evaluate the role of a potential interaction between superoxide anion (O2 ) and nitric oxide (NO) in regulating k...
متن کاملInhibition of nitric oxide synthase enhances superoxide activity in canine kidney.
To evaluate the role of a potential interaction between superoxide anion (O(2)(-)) and nitric oxide (NO) in regulating kidney function, we examined the renal responses to intra-arterial infusion of a superoxide dismutase mimetic, tempol (0.5 mg.kg(-1).min(-1)), in anesthetized dogs treated with or without NO synthase inhibitor, N(omega)-nitro-l-arginine (NLA; 50 microg.kg(-1).min(-1)). In one g...
متن کاملNitric oxide blockade enhances renal responses to superoxide dismutase inhibition in dogs.
To examine the potential role of superoxide anion (O(2)(-)) and its interaction with NO in the regulation of renal hemodynamics and excretory function, we have evaluated the renal responses to enhancement in O(2)(-) activity before and during NO synthase inhibition in anesthetized dogs (n=6). Intraarterial infusion of a superoxide dismutase (SOD) inhibitor, diethyldithiocarbamate (DETC; 0.1 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 288 2 شماره
صفحات -
تاریخ انتشار 2005